USER MANUAL
UM – 07 EN

AIRCRAFT PROPELLER
Type - Model: KLASSIC 170/3

Serial Number:
TABLE OF CONTENTS

1. List of Effective Pages ... 3
2. List of Revisions ... 3
3. Introduction .. 4
4. Propeller Manufacturer ... 4
5. Type Certificate Holder ... 4
6. Propeller Serial Number ... 4
7. General Information .. 4
8. Safety of Operation .. 5
9. Propeller Design .. 5
10. Propeller Designation System ... 6
10.1. Propeller Blades ... 6
10.2. Propeller Hub ... 6
10.3. Company Logo ... 6
11. Propeller Specifications ... 6
12. Connecting the KLASSE 170 Propeller to the Engine 7
13. Propeller Reassembly Procedure .. 7
13.1. Propeller State Description .. 7
13.2. Propeller Blades Assembly .. 8
13.3. Blade Angle / Pitch Setting ... 8
13.4. Static Balancing .. 8
14. Propeller Installation to the Aircraft .. 8
14.1. Propeller without Spacer .. 8
14.2. Propeller with Spacer ... 9
15. Handling, Storage and Transport .. 9
15.1. Propeller Supply ... 9
15.2. Handling .. 9
15.3. Manner of Storage ... 9
15.4. Transport ... 9
15.5. Responsibility for Transport ... 9
16. Inspections .. 10
16.1. Preflight Inspection ... 10
16.2. First 25 Operation Hours or Each New Installation and at every Annual Inspection of Aircraft 10
16.3. Medium Repair ... 11
16.4. Overhaul ... 11
16.5. Annual Inspection ... 11
17. Special Inspections ... 11
18. Repairs .. 12
18.1. Blade Repair .. 12
18.2. Repair of Hub and Matal Propeller Parts 12
18.3. Repair of Spinner .. 12
18.4. Replacement of Self-adhesive Polyurethane Tape 12
19. Troubleshooting ... 13
20. Warranty ... 14
20.1. Warranty Period ... 14
20.2. Warranty Conditions ... 14
20.3. Liability ... 14
20.4. Realization .. 14
WARRANTY CERTIFICATE .. 15
ILLUSTRATED PARTS CATALOGUE .. 16
1. List of Effective Pages

<table>
<thead>
<tr>
<th>Page</th>
<th>Issue</th>
<th>Date of issue</th>
<th>Page</th>
<th>Rev.</th>
<th>Date of issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>01.09.2015</td>
<td>11</td>
<td>1</td>
<td>09.07.2018</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>01.09.2015</td>
<td>12</td>
<td>0</td>
<td>01.09.2015</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>09.07.2018</td>
<td>13</td>
<td>0</td>
<td>01.09.2015</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>01.09.2015</td>
<td>14</td>
<td>0</td>
<td>01.09.2015</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>01.09.2015</td>
<td>15</td>
<td>0</td>
<td>01.09.2015</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>09.07.2018</td>
<td>16</td>
<td>0</td>
<td>01.09.2015</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>01.09.2015</td>
<td>17</td>
<td>0</td>
<td>01.09.2015</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>01.09.2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>01.09.2015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>09.07.2018</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. List of Revisions

Changes or revisions of this manual may only be carried out by the manufacturer. Any change should be recorded in the following table.

New or revised text on a changed page will be marked by a black vertical line on the right side of the page. The new date and number of the revision will be recorded on the bottom edge of the page.

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date of issue</th>
<th>Revised pages</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>09.07.2018</td>
<td>3, 6, 10, 11</td>
<td>Changes in obligations for continuing airworthiness of the propellers</td>
</tr>
</tbody>
</table>
3. Introduction

Before putting into service, please read this manual carefully to provide basic safety information.
If you do not understand any of the passages of the manual or have any doubts, please contact the propeller manufacturer - Woodcomp Propellers s.r.o.

We wish you many successful flights with propellers "Aleš KŘEMEN - WOODCOMP".
This User Manual is prepared in general for the KLASSIC 170 series of propellers, regardless of the category in which the aircraft with this propeller is operating. If the propeller is installed on EASA-type authorized aircraft, maintenance shall be performed by authorised service centre in accordance with Commission Regulation (EU) No. 1321/2014, unless otherwise specified by the aircraft manufacturer.

4. Propeller Manufacturer

Woodcomp Propellers Ltd.
Vodolská 4, Dolínek
250 70 Odolena Voda, Czech Republic

Legal form: Limited Liability Company registered in the Commercial Register maintained by the Municipal Court in Prague, Section C, File 80616
Company ID: 018 93 351
VAT No: CZ01893351
Phone: +420 283 971 309
Mail: info@woodcomp.cz
http://www.woodcomp.cz

5. Type Certificate Holder

The KLASSIC series propellers were developed by Aleš Křemen company - ID: 279 52 428) and certified by the Light Aircraft Association of the Czech Republic under the number UL-05/98.
The EASA type certification of the KLASSIC 170/3 propeller is part of the Type certificate of the appropriate aircraft.

6. Propeller Serial Number

In any contact with the manufacturer, please state in your application the exact type of the propeller and its serial number. These data are given on the first page of this User Manual, on the Warranty Sheet, on the label of each propeller blade, and the serial number is also stamped on the propeller hub.

7. General Information

The KLASSIC series propellers are very reliable and proven in long-term operation, but theoretically, defects can occur for each product.

Although it is only possible to read out the instructions in this manual that all the risks arising from the propeller operation, the application of the information and the proper using of the propeller can not be ruled out, these risks can be minimized.

The information and descriptions contained in this manual are valid at the time of issue. For any changes or mandatory precautions, an early warning system for users of these propellers is introduced by issuing service bulletins, which are published on the Woodcomp Propellers website (http://www.woodcomp.cz).
Illustrations in this manual are schematic and do not replace drawings. Specifications are given in the SI metric system.

This handbook may be translated from Czech to any other language, but the original Czech text will always be considered as authoritative.
8. Safety of Operation

⚠️ This propeller is subject to the approval of aviation authorities and is operated at your own risk!
Aerobatic and intentional spins are prohibited with the propeller!
Operation in icing conditions is prohibited!

- Use the propeller only on the engine and aircraft listed in the propeller logbook.
- Do not operate the propeller at higher than maximum permitted speeds, except for the emergency procedures listed in the aircraft flight manual.
- Do not start the engine by hand.
- Move the airplane by holding the propeller at blade root close to the propeller hub.
- Always check the condition of the propeller and its attachment before starting the engine.
- Always secure the free space near the propeller before starting the engine.
- A record of any inspection and repair must be made in the propeller logbook.
- Do not transport or store the propeller by placing it on the tips even for a short time!
- Do not store the propeller and its accessories in extremely humid environments and do not leave the propeller for a long time outdoors in the rain.

⚠️ Interference with the setting of a propeller by persons not authorized by the manufacturer is strictly forbidden!

9. Propeller Design

Propeller blades are made of a new generation of the composite shell. This unit creates a perfect compact sandwich construction. Rotary and centrifugal forces are transmitted to the propeller hub by an important structural element, a composite shaped tube that is embedded in the shaft, the root of the blade and the blade body itself. The tips of the propeller blades are painted in red to highlight the ends of the propeller while rotating.

The propeller hub is made up of two cast aluminum alloys, which are assembled with M6 screws. Both halves of the hub tightly clamp the propeller blades and prevent their rotation or vibration.

Propellers of this type series have undergone a number of demanding tests that have proven a high level of safety in their operation.

Propellers are designed to be fitted to reciprocating piston engines with reduction gear.

The KLASSIC type series of propellers with their performances, properties and safety meets the regulatory requirements for standard airplane categories.

Propellers are equipped with the spiners made of composite. They are produced in various shapes and colors, according to the installation dimensions of the particular aircraft and the customer's wishes.

For installation on some aircraft, the propeller can be equipped with 18-100mm duraluminium spacer.
10. Propeller Designation System

The serial number of each propeller is unique and contains important identifying data.

10.1. Propeller Blades

The type plate is made by stamping the appropriate 4 mm height symbols on a 10 mm wide silver self-adhesive tape and is located at the root of each blade.

Example of the type plate:

```
1056 683R-2/G
```

Where:

- 1056: S/N of the propeller
- 68: Propeller diameter in inches
- 3: Number of blades
- R: Right-hand tractor (L = Left-hand tractor; RP = Right-hand pusher; LP = Left-hand pusher)
- 2: Blade position in the propeller hub
- G: Sign that the propeller blade was already once overhauled.

10.2. Propeller Hub

The S/N is stamped on the propeller hub by the 4 mm metal punches.

On both halves of the propeller hub are the cast numbers used to identify the X-ray tests performed.

10.3. Company Logo

The company logos are made of imprinted self-adhesive foil and their location on the blades is determined by drawings.

11. Propeller Specifications

<table>
<thead>
<tr>
<th>Propeller type: KLASSIC 170/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propeller category</td>
</tr>
<tr>
<td>Operation mode</td>
</tr>
<tr>
<td>Sense of rotation</td>
</tr>
<tr>
<td>Max. engine output</td>
</tr>
<tr>
<td>Max. speed</td>
</tr>
<tr>
<td>Propeller diameter</td>
</tr>
<tr>
<td>Time Between Overhaul (TBO)</td>
</tr>
<tr>
<td>Service life</td>
</tr>
</tbody>
</table>

KLASSIC 170/3 propeller is designed for use on piston engines and is operationally verified on ROTAX piston engines.

ROTAX engines must be equipped with a reduction gear for the KLASSIC series propellers.

⚠️ Exceeding the operational parameters may cause the heavy damage of the propeller, engine or reduction gear.

Damaging the propeller may further lead to impairment of its balance and in critical case also to deformation of the engine mounting.
12. Connecting the KLASSIC 170 Propeller to the Engine

The dimensions correspond to the Rotax 912 engine flange - part number ROTAX 837 282. For attaching the KLASSIC propeller, use holes on the ø75mm pitch circle.

If needed, the propeller can be equipped with a special duralumin spacer of 18-100mm size.

13. Propeller Reassembly Procedure

The propeller is fully completed and put into airworthiness by Woodcomp Propellers. After performing all the specified activities, the propeller is ready for transport to the operator.

In order to simplify and reduce shipping costs, the propeller can be disassembled before packing. Although the procedure of adjusting the propeller on the airplane is simple, an unsafe operation may result in a state of danger for the integrity of the powerplant and the safety of operation, so that the assembly may only be performed by an authorized service organization.

13.1. Propeller State Description

Note: All the mentioned positions are linked with the illustrated parts catalogue (Fig. 2 and 3). Individual parts of the propeller are marked, and are unique their position in assembly.

Both halves of the hub (pos. 1, 2) have on the face marks for relevant propeller blades stamped numbers 1, 2, 3.

Each propeller blade (pos. 3) has on the root a label with the number 1, 2 or 3, which identifies its position at the hub.

Setting of the spinner (pos. 5) towards backplate (pos. 4) is marked with red dots.

An option of the propeller can be spacer (pos. 6) used to ensure sufficiency distance between propeller and engine cowling.
13.2. Propeller Blades Assembly
Place propeller blades (pos. 3) to related position in hub (pos. 1, 2) – incorrect positioning is not permitted!
Using supplied screws (pos. 8) without washers, tighten each blade but allow blade to still rotate. Pull the blades in direction of centrifugal forces to remove axial play in the locked blades.

13.3. Blade Angle / Pitch Setting
To adjust the angle of the propeller blades, place the hub with blades (pos. 1, 2, 3) on a horizontal plate (check with a protractor). The angle set by carefully turning of the blades in the propeller hub. Blade setting angle means the angle between the propeller rotation plane (in this case the horizontal plane on which is placed the propeller hub) and a tangent to the lower (pressure) side of the blade profile at a distance of 50 mm (2") from tip of the blade (end of colouring tip). Angle measurement is performed by applying a suitable protractor or template on the bottom (pressure) side of the blade in that the distance from the end.
After setting all blades to the desired angle, tighten each of the stems with 4 screws (pos. 8) using torque of 10 Nm. Screws tighten step by step, cross. After tightening recheck setting of angles of the blades.
In the hole in of front half of the hub (pos. 2) insert the plug (pos. 13). The propeller is ready for installation on the aircraft.

13.4. Static Balancing
The final stage in production or maintenance the propeller is statically balanced on a precise instrument. Propeller is balancing without spinner. Spinner assembly with back plate is balanced independently.
To keep adjusted balance, every part must be placed in the same position as before dismantling.

14. Propeller Installation to the Aircraft
14.1. Propeller without Spacer
Mount on engine flange backplate (pos. 4) and afterward propeller hub with blades (pos. 1, 2, 3). Attach the propeller using 6 screws (pos. 9) with washers (pos. 10) and self-locking nuts (pos. 12). Tighten the nuts using 22 Nm in the sequence as shown in Fig.1.
After tightening secure screws (pos. 9) in pairs using Ø 0.5mm stainless locking wire.
The spinner (pos. 5) attach on propeller in the position marked by red dots on the back plate - to ensure fitting the spinner in the correct position. Tighten the spinner using 6 screws (pos. 14) with plastic washers (pos. 15). Screws secure with Loctite 243.

![Fig. 1- Sequence of tightening attachment screws]
14.2. Propeller with Spacer

Mount on the engine flange spacer (pos. 6). From the rear of the engine flange put bushings (pos. 7) which passes through to a hole in the spacer. Attach the spacer using six M8 screws (pos. 11) and self-locking nuts (pos. 12). The tighten nuts using 22 Nm torque.

On spacer attach backplate (pos. 4) and then hub with blades (pos. 1, 2, 3). Attach the propeller using 6 screws M8 (pos. 9) with washer’s (pos. 10). Tighten the nuts using 22Nm in the sequence as shown in Fig.1.

The spinner (pos. 5) attach on propeller in the position marked by red dots on the back plate - to prevent fitting the spinner in a different position. Attach the spinner using 6 screws (pos. 14) with plastic washers (pos. 15). Screws secure with Loctite 243.

The tightening torques of the screw connections is only valid for dry, uncoated threads!

15. Handling, Storage and Transport

15.1. Propeller Supply

The propeller is supplied as a complete set, including the fixing elements of the propeller and also the necessary documentation.

15.2. Handling

The propeller must be handled very carefully so as not to damage it eg by impact.

When transporting the propeller in a disassembled state, its blades must be protected by protective covers. For safer transport, however, we recommend inserting the propeller into a rigid container (cardboard, plywood, etc.). The propeller must be placed horizontally on the support supporting the propeller hub.

15.3. Manner of Storage

During storage, the propeller blades should be protected by protective covers. In the case of long-term storage, it is recommended to clean the propeller hub and the propeller blades with lukewarm water with detergent.

The propeller must be placed horizontally on a support supporting the propeller hub or hung at the attaching holes in the hub.

Climatic conditions: temperature 5° to 25°C and relative humidity up to 80%.

It is forbidden to store the propeller in such a manner that is put on the ends of two blades and supported by the wall, even for a short time!

15.4. Transport

If the propeller is delivered to the customer in a special cardboard package, it can also be used to return the propeller for service visits to the manufacturer or an authorized service center.

Note: In case of transport for overhaul, the propeller may be transported in a dismantled state, if the dismantling was performed by an authorized service center.

15.5. Responsibility for Transport

The producer is responsible for the proper packing of the propeller from the moment of leaving the plant, until it is taken over by the forwarding company. Then the forwarder takes over responsibility. The client, when receiving the propeller from the forwarder, should check visually that the packing of the propeller is not damaged.

In case of packing damage it is necessary to unpack the propeller in the presence of the forwarder, to check for and claim for any possible damage from the forwarder.
16. Inspections

Mandatory inspections must be performed by the manufacturer or a service centre authorized to perform aircraft maintenance according to the internationally valid regulations (EASA, FAA, etc.) – “Authorized service centre” in the following text, in the intervals specified below:

<table>
<thead>
<tr>
<th>Chpt.</th>
<th>Type of inspection</th>
<th>Operating hours</th>
<th>Performed by</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1</td>
<td>Preflight inspection</td>
<td>Before each flight</td>
<td>Pilot or designated mechanic/technician</td>
</tr>
<tr>
<td>16.2</td>
<td>Check tightening the fastening nuts</td>
<td>After first 25 operation hours from each new installation to the engine</td>
<td>Flight engineer (AML ICAO, AML Part 66, apod.)</td>
</tr>
<tr>
<td>16.3</td>
<td>Medium repair</td>
<td>See Chap. 16.4</td>
<td>Manufacturer or Authorized service centre</td>
</tr>
<tr>
<td>16.4</td>
<td>Overhaul (TBO)</td>
<td>Service Bulletin No. UL 02/2012</td>
<td>Manufacturer or Authorized service centre</td>
</tr>
<tr>
<td>16.5</td>
<td>Annual inspection</td>
<td>During the Annual inspection of the aircraft regardless of the number of operation hours of the propeller</td>
<td>Maintenance organization of the aircraft with the propeller is certified</td>
</tr>
<tr>
<td>17</td>
<td>Special inspections</td>
<td>Exceptional</td>
<td>Propeller manufacturer</td>
</tr>
</tbody>
</table>

A record of periodic inspection must be made in the Propeller logbook.

16.1. Preflight Inspection

- Check tightening and securing of all bolts – lock wire.
- Check firm seating of all blades – blades must not show any signs of movement or play in the hub.
- Visually check any damage on the blades – blades must not show damage due to a direct strike (rock, bolt, etc.) or damage that would show cracks in the surface of the blades due to strike of a stationary propeller while manipulating airplane on field or in the hangar etc.
- Visually check of the hub - must be without cracks.

If the check doesn’t show satisfactory results, stop immediately the operation and hand the propeller over for the check and eventually a repair to the authorized service center or manufacturer!

16.2. First 25 Operation Hours or Each New Installation and at every Annual Inspection of Aircraft

Perform all the tasks of the preflight inspection in accordance with Chapter 16.1.

Remove the propeller spinner, remove the lock wire from the screws (pos. 9) and check the tightening of the nuts (pos. 12) with a torque of 22 Nm. If the spacer is used, check the tightening of the nuts (pos. 12) and the screws (pos. 9) to secure the propeller to the spacer. To tighten, use a torque wrench with a valid calibration. Install the spinner according to Chapter 14 of this manual.
16.3. Medium Repair

Medium Repair is performed when half of the established operational hours or calendar interval of Overhaul (TBO) is met – whichever occurs first.

Medium Repair may only be performed by the manufacturer or an Authorized service centre.

Without medium repair, the propeller is forbidden to operate.

16.4. Overhaul

The time between overhauls (TBO) is established by Service Bulletin No UL 02/2012 in the current wording (see www.woodcomp.cz).

Overhaul may only be performed by manufacturer or an Authorized service centre.

Without the required scheduled repairs, the propeller is unairworthy and can not be operated!

16.5. Annual Inspection

The Annual inspection of the propeller is performed within an annual aircraft inspection regardless of the number of operating hours.

Annual inspection range:

- Remove spinner (pos. 5), remove safe locking wire from the screws pos. 9 and check the tightening of the nuts pos. 12 with a torque of 22Nm. If the spacer is used, check the tightening nuts (pos. 12) and the screws (pos. 9) of the propeller fixing screws to the spacer. To tighten, use a torque wrench with a valid calibration time.

- After tightening, secure the screws (pos. 9) of in pairs with stainless steel wire Ø 0.5mm.

- Check that all blades are secure.

- Check the tightening of four M6 Allen screws on each blade with a torque of 10Nm. The blades must not show clearance, marks of rotation in roots, etc.

- Visual inspection of the surface of the blades: The blades must not be damaged due to the impact of hard particles (stone, bolt, etc.), they must not show any damage that may result in cracks, etc. Possible damages detected may not be larger than allowed in Chapter 18.

- If the self-adhesive tape is damaged, replace it with a new one (see 18.4).

- Place the spinner (pos. 5) on the propeller in the position indicated by red dots on the perimeter - in no case may the cone be mounted in a different position. Tighten the cone with the nine M4 bolts (pos.14) with plastic washers (pos. 15). Secure the screws with Loctite 243.

The annual inspection may be performed by an authorized service organization of the aircraft with which the Propeller is certified.

17. Special Inspections

Special inspections must be performed:

When major damage to blade by impact of foreign object (stone, bird, hail, etc.) is detected

- In case of careless or prohibited handling;
- In case of overspeed the propeller by more than 200 rpm;
- In case of lighting strike;
- In all cases of operating the propeller outside the conditions/ranges stated in this manual.

Special inspections may also be required, for example, when installing propellers on engines other than ROTAX 912.

WARNING!
Damaged propeller is more dangerous than damaged engine!
18. Repairs

This chapter describes how to repair minor damage that the user can perform on his own. The description of the damage and the method of repair are then necessary to record in the Propeller logbook.

The repair of damage of larger extent must be carried out by the manufacturer or by an authorized service centre.

18.1. Blade Repair

It is allowed to repair the damage like small scratches and notches appearing on the propeller blade in area ranging from radius $R = 250\, \text{mm}$ towards the blade tip, not more than 5 pieces in one blade.

Damage in the root blade area is allowed to be repaired by the manufacturer or authorized service center only.

Maximum acceptable depth of damaged leading or trailing propeller edge is $2\, \text{mm}$, while the distance between the repaired spots may be not less than $80\, \text{mm}$. The spots length shall be not more than $30\, \text{mm}$.

Maximum acceptable depth of damaged sucking or pressure blade side is $0.7\, \text{mm}$, while the distance between the repaired spots may be not less than $100\, \text{mm}$ and the spots may be not larger than $1\, \text{cm}^2$.

Instructions for blade repair:
1. Clean and dry the damaged area carefully.
2. Grind the damaged area by means of a smooth file or sandpaper.
3. Seal the damaged area with cement on the epoxy basis.
4. Grind the surface after the cement is cured.
5. Repaint the damaged area with polyurethan email.

18.2. Repair of Hub and Metal Propeller Parts

Repairs of hub and metal propeller parts are strictly prohibited!

18.3. Repair of Spinner

Only repairs relating to small surface grooves on the outside of spinner with max. depth of $0.5\, \text{mm}$ are allowed.

Instructions for repair of spinner:
1. Clean and dry the damaged area carefully.
2. Grind the damaged area by means of a smooth file or sandpaper.
3. Repaint locally the groove with polyurethan email.

18.4. Replacement of Self-adhesive Polyurethane Tape

Instructions for replacement:
1. Tear down the original tape carefully (a moderate pre-heating of the tape with help of hair dryer is recommended).
2. Use solution (25% isopropanol (or ethylalcohol) with 75% water and adding a small drop of dishwashing detergent) and clean and degrease the blade leading edge. Do not use other organic solvents or soap.
3. Strip off the protective foil from the new tape carefully, so that you do not touch or contaminate the gluing side of the tape.
4. Touch the tape to the prepared blade surface.
5. Squeeze out air bubbles with help of a plastic spattle or perforate the tape with a pin and apply a roller or fingers to push the air away. Do not use a blade or knife to perforate the tape!
6. In terms of operation the propeller is ready for use not sooner than after 24 hours since the tape was touched to the surface and the adhesive has became hardened.
19. Troubleshooting

If the following advice fails to remedy the problem, please contact the propeller manufacturer or an authorized service organization:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible reason</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibration in flight or on the ground</td>
<td>Propeller damage</td>
<td>Carry out visual inspection of the propeller and its accessories. Repair any damage or contact the manufacturer.</td>
</tr>
<tr>
<td></td>
<td>Improper propeller attachment</td>
<td>Check the propeller attachment to the engine and check securing condition. In the event of a finding, carry out a reassembly, including locking, or contact the manufacturer.</td>
</tr>
<tr>
<td></td>
<td>Static imbalance of the propeller</td>
<td>Remove the propeller, check static balance at the manufacturer.</td>
</tr>
<tr>
<td></td>
<td>Engine failure</td>
<td>Follow the engine manufacturer's instructions.</td>
</tr>
</tbody>
</table>
20. **Warranty**

20.1. **Warranty Period**

The manufacturer is liable for defects in the new and unused product from the date of sale to the first user for 24 consecutive months or 100 operating hours from the date specified in the warranty certificate and whichever comes first.

The propeller operation hours shall be consistent with records in the propeller logbook and aircraft flight book.

No unauthorized changes or unprofessional modifications must be made to the propeller, otherwise the warranty will be refused.

Propellers must be operated in accordance with the manufacturer’s instructions in this User Manual.

20.2. **Warranty Conditions**

The user must provide to the manufacturer the propeller logbook with confirmed warranty certificate and properly maintained records about propeller installation and operation.

20.3. **Liability**

The warranty does not apply to possible secondary damage.

All legal relationships arising in connection with the purchase of the propeller by the user, with the services provided by the manufacturer in its maintenance, legal relations arising from the operation of the propeller, in particular legal relations arising from liability for propeller defects, legal relations regarding damages and compensation of property and non-property damages incurred in connection with the operation of the propeller, its accident and the related events will be assessed under the law of the Czech Republic and will be decided in the matter of the competent court in the Czech Republic under the law of the Czech Republic.

20.4. **Realization**

The defective product within the warranty period, the manufacturer on the basis of the defect assessment repairs and / or replaces defective parts with new ones, free of charge for new parts and work. All original faulty parts become the property of the manufacturer.
WARRANTY CERTIFICATE

Manufacturer: Woodcomp Propellers s.r.o.
Vodolská 4, Dolínek
250 70 Odolena Voda
Czech Republic

Propeller Type: KLASSIC 170/3

Model:

Serial Number:

Sell by Date:

Stamp and Signature of Supplier:

This product is warranted in accordance with the warranty terms in Chapter 20 of this User Manual.
Illustrated Parts Catalogue

Fig. 2 - Propeller without spacer

Fig. 3 - Propeller with spacer

<table>
<thead>
<tr>
<th>Poz.</th>
<th>Název</th>
<th>P/N</th>
<th>Ks</th>
<th>Poz.</th>
<th>Název</th>
<th>P/N</th>
<th>Ks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>Hub Klassic 170/3</td>
<td>B-1120-00</td>
<td>1</td>
<td>10</td>
<td>Washer</td>
<td>A-1012-02</td>
<td>6-12</td>
</tr>
<tr>
<td>3</td>
<td>Blade Klassic 170</td>
<td>B-1110-00</td>
<td>3</td>
<td>11</td>
<td>Screw (dimension acc. to the spacer)</td>
<td>A-1000-00</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>Backplate</td>
<td>C-1127-00</td>
<td>1</td>
<td>12</td>
<td>Nut</td>
<td>A-1009-02</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>Spinner</td>
<td>B-1121-00</td>
<td>1</td>
<td>13</td>
<td>Cap</td>
<td>B-1123-00</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Spacer</td>
<td>B-1124-00</td>
<td>1</td>
<td>14</td>
<td>Screw</td>
<td>A-1003-02</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>Bushing</td>
<td>B-1061-00</td>
<td>6</td>
<td>15</td>
<td>Washer</td>
<td>A-1013-02</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>Screw</td>
<td>A-1001-07</td>
<td>12</td>
<td>16</td>
<td>Plug</td>
<td>B-1122-00</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>Screw</td>
<td>B-1096-00</td>
<td>6</td>
<td>-</td>
<td>Transparent tape (Blade leading edge)</td>
<td>A-1030-02</td>
<td></td>
</tr>
</tbody>
</table>